
Advances in Engineering Software 69 (2014) 46–61

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft
Grey Wolf Optimizer
0965-9978/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007

⇑ Corresponding author. Tel.: +61 434555738.
E-mail addresses: seyedali.mirjalili@griffithuni.edu.au (S. Mirjalili),

mohammad.smm@gmail.com (S.M. Mirjalili), a.lewis@griffith.edu.au (A. Lewis).
Seyedali Mirjalili a,⇑, Seyed Mohammad Mirjalili b, Andrew Lewis a

a School of Information and Communication Technology, Griffith University, Nathan Campus, Brisbane QLD 4111, Australia
b Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Shahid Beheshti University, G.C. 1983963113, Tehran, Iran
a r t i c l e i n f o

Article history:
Received 27 June 2013
Received in revised form 18 October 2013
Accepted 11 December 2013

Keywords:
Optimization
Optimization techniques
Heuristic algorithm
Metaheuristics
Constrained optimization
GWO
a b s t r a c t

This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves
(Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey
wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for sim-
ulating the leadership hierarchy. In addition, the three main steps of hunting, searching for prey, encir-
cling prey, and attacking prey, are implemented. The algorithm is then benchmarked on 29 well-known
test functions, and the results are verified by a comparative study with Particle Swarm Optimization
(PSO), Gravitational Search Algorithm (GSA), Differential Evolution (DE), Evolutionary Programming
(EP), and Evolution Strategy (ES). The results show that the GWO algorithm is able to provide very com-
petitive results compared to these well-known meta-heuristics. The paper also considers solving three
classical engineering design problems (tension/compression spring, welded beam, and pressure vessel
designs) and presents a real application of the proposed method in the field of optical engineering. The
results of the classical engineering design problems and real application prove that the proposed algo-
rithm is applicable to challenging problems with unknown search spaces.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction problems since they mostly assume problems as black boxes. In
Meta-heuristic optimization techniques have become very pop-
ular over the last two decades. Surprisingly, some of them such as
Genetic Algorithm (GA) [1], Ant Colony Optimization (ACO) [2],
and Particle Swarm Optimization (PSO) [3] are fairly well-known
among not only computer scientists but also scientists from differ-
ent fields. In addition to the huge number of theoretical works,
such optimization techniques have been applied in various fields
of study. There is a question here as to why meta-heuristics have
become remarkably common. The answer to this question can be
summarized into four main reasons: simplicity, flexibility, deriva-
tion-free mechanism, and local optima avoidance.

First, meta-heuristics are fairly simple. They have been mostly
inspired by very simple concepts. The inspirations are typically re-
lated to physical phenomena, animals’ behaviors, or evolutionary
concepts. The simplicity allows computer scientists to simulate dif-
ferent natural concepts, propose new meta-heuristics, hybridize
two or more meta-heuristics, or improve the current meta-heuris-
tics. Moreover, the simplicity assists other scientists to learn meta-
heuristics quickly and apply them to their problems.

Second, flexibility refers to the applicability of meta-heuristics
to different problems without any special changes in the structure
of the algorithm. Meta-heuristics are readily applicable to different
other words, only the input(s) and output(s) of a system are impor-
tant for a meta-heuristic. So, all a designer needs is to know how to
represent his/her problem for meta-heuristics.

Third, the majority of meta-heuristics have derivation-free
mechanisms. In contrast to gradient-based optimization ap-
proaches, meta-heuristics optimize problems stochastically. The
optimization process starts with random solution(s), and there is
no need to calculate the derivative of search spaces to find the opti-
mum. This makes meta-heuristics highly suitable for real problems
with expensive or unknown derivative information.

Finally, meta-heuristics have superior abilities to avoid local op-
tima compared to conventional optimization techniques. This is
due to the stochastic nature of meta-heuristics which allow them
to avoid stagnation in local solutions and search the entire search
space extensively. The search space of real problems is usually un-
known and very complex with a massive number of local optima,
so meta-heuristics are good options for optimizing these challeng-
ing real problems.

The No Free Lunch (NFL) theorem [4] is worth mentioning here.
This theorem has logically proved that there is no meta-heuristic
best suited for solving all optimization problems. In other words,
a particular meta-heuristic may show very promising results on a
set of problems, but the same algorithm may show poor perfor-
mance on a different set of problems. Obviously, NFL makes this
field of study highly active which results in enhancing current ap-
proaches and proposing new meta-heuristics every year. This also

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2013.12.007&domain=pdf
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
mailto:seyedali.mirjalili@griffithuni.edu.au
mailto:mohammad.smm@gmail.com
mailto:a.lewis@griffith.edu.au
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft

S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61 47

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
motivates our attempts to develop a new meta-heuristic with
inspiration from grey wolves.

Generally speaking, meta-heuristics can be divided into two
main classes: single-solution-based and population-based. In the
former class (Simulated Annealing [5] for instance) the search pro-
cess starts with one candidate solution. This single candidate solu-
tion is then improved over the course of iterations. Population-
based meta-heuristics, however, perform the optimization using
a set of solutions (population). In this case the search process starts
with a random initial population (multiple solutions), and this
population is enhanced over the course of iterations. Population-
based meta-heuristics have some advantages compared to single
solution-based algorithms:

� Multiple candidate solutions share information about the
search space which results in sudden jumps toward the prom-
ising part of search space.
� Multiple candidate solutions assist each other to avoid locally

optimal solutions.
� Population-based meta-heuristics generally have greater explo-

ration compared to single solution-based algorithms.

One of the interesting branches of the population-based meta-
heuristics is Swarm Intelligence (SI). The concepts of SI was first
proposed in 1993 [6]. According to Bonabeau et al. [1], SI is ‘‘The
emergent collective intelligence of groups of simple agents’’. The inspi-
rations of SI techniques originate mostly from natural colonies,
flock, herds, and schools. Some of the most popular SI techniques
are ACO [2], PSO [3], and Artificial Bee Colony (ABC) [7]. A compre-
hensive literature review of the SI algorithms is provided in the
next section. Some of the advantages of SI algorithms are:

� SI algorithms preserve information about the search space over
the course of iteration, whereas Evolutionary Algorithms (EA)
discard the information of the previous generations.
� SI algorithms often utilize memory to save the best solution

obtained so far.
� SI algorithms usually have fewer parameters to adjust.
� SI algorithms have less operators compared to evolutionary

approaches (crossover, mutation, elitism, and so on).
� SI algorithms are easy to implement.

Regardless of the differences between the meta-heuristics, a
common feature is the division of the search process into two
phases: exploration and exploitation [8–12]. The exploration phase
refers to the process of investigating the promising area(s) of the
search space as broadly as possible. An algorithm needs to have sto-
chastic operators to randomly and globally search the search space
in order to support this phase. However, exploitation refers to the lo-
cal search capability around the promising regions obtained in the
exploration phase. Finding a proper balance between these two
phases is considered a challenging task due to the stochastic nature
of meta-heuristics. This work proposes a new SI technique with
inspiration from the social hierarchy and hunting behavior of grey
wolf packs. The rest of the paper is organized as follows:

Section 2 presents a literature review of SI techniques. Section 3
outlines the proposed GWO algorithm. The results and discussion
of benchmark functions, semi-real problems, and a real application
are presented in Sections 4-6, respectively. Finally, Section 7 con-
cludes the work and suggests some directions for future studies.
2. Literature review

Meta-heuristics may be classified into three main classes:
evolutionary, physics-based, and SI algorithms. EAs are usually
inspired by the concepts of evolution in nature. The most popular
algorithm in this branch is GA. This algorithm was proposed by
Holland in 1992 [13] and simulates Darwnian evolution concepts.
The engineering applications of GA were extensively investigated
by Goldberg [14]. Generally speaking, the optimization is done
by evolving an initial random solution in EAs. Each new population
is created by the combination and mutation of the individuals in
the previous generation. Since the best individuals have higher
probability of participating in generating the new population, the
new population is likely to be better than the previous genera-
tion(s). This can guarantee that the initial random population is
optimized over the course of generations. Some of the EAs are Dif-
ferential Evolution (DE) [15], Evolutionary Programing (EP) [16,17],
and Evolution Strategy (ES) [18,19], Genetic Programming (GP)
[20], and Biogeography-Based Optimizer (BBO) [21].

As an example, the BBO algorithm was first proposed by Simon
in 2008 [21]. The basic idea of this algorithm has been inspired by
biogeography which refers to the study of biological organisms in
terms of geographical distribution (over time and space). The case
studies might include different islands, lands, or even continents
over decades, centuries, or millennia. In this field of study different
ecosystems (habitats or territories) are investigated for finding the
relations between different species (habitants) in terms of immi-
gration, emigration, and mutation. The evolution of ecosystems
(considering different kinds of species such as predator and prey)
over migration and mutation to reach a stable situation was the
main inspiration of the BBO algorithm.

The second main branch of meta-heuristics is physics-based
techniques. Such optimization algorithms typically mimic physical
rules. Some of the most popular algorithms are Gravitational Local
Search (GLSA) [22], Big-Bang Big-Crunch (BBBC) [23], Gravitational
Search Algorithm (GSA) [24], Charged System Search (CSS) [25],
Central Force Optimization (CFO) [26], Artificial Chemical Reaction
Optimization Algorithm (ACROA) [27], Black Hole (BH) [28] algo-
rithm, Ray Optimization (RO) [29] algorithm, Small-World Optimi-
zation Algorithm (SWOA) [30], Galaxy-based Search Algorithm
(GbSA) [31], and Curved Space Optimization (CSO) [32]. The mech-
anism of these algorithms is different from EAs, in that a random
set of search agents communicate and move throughout search
space according to physical rules. This movement is implemented,
for example, using gravitational force, ray casting, electromagnetic
force, inertia force, weights, and so on.

For example, the BBBC algorithm was inspired by the big bang
and big crunch theories. The search agents of BBBC are scattered
from a point in random directions in a search space according to
the principles of the big bang theory. They search randomly and
then gather in a final point (the best point obtained so far) accord-
ing to the principles of the big crunch theory. GSA is another phys-
ics-based algorithm. The basic physical theory from which GSA is
inspired is Newton’s law of universal gravitation. The GSA algo-
rithm performs search by employing a collection of agents that
have masses proportional to the value of a fitness function. During
iteration, the masses are attracted to each other by the gravita-
tional forces between them. The heavier the mass, the bigger the
attractive force. Therefore, the heaviest mass, which is possibly
close to the global optimum, attracts the other masses in propor-
tion to their distances.

The third subclass of meta-heuristics is the SI methods. These
algorithms mostly mimic the social behavior of swarms, herds,
flocks, or schools of creatures in nature. The mechanism is almost
similar to physics-based algorithm, but the search agents navigate
using the simulated collective and social intelligence of creatures.
The most popular SI technique is PSO. The PSO algorithm was pro-
posed by Kennedy and Eberhart [3] and inspired from the social
behavior of birds flocking. The PSO algorithm employs multiple
particles that chase the position of the best particle and their

48 S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
own best positions obtained so far. In other words, a particle is
moved considering its own best solution as well as the best solu-
tion the swarm has obtained.

Another popular SI algorithm is ACO, proposed by Dorigo et al.
in 2006 [2]. This algorithm was inspired by the social behavior of
ants in an ant colony. In fact, the social intelligence of ants in find-
ing the shortest path between the nest and a source of food is the
main inspiration of ACO. A pheromone matrix is evolved over the
course of iteration by the candidate solutions. The ABC is another
popular algorithm, mimicking the collective behavior of bees in
finding food sources. There are three types of bees in ABS: scout,
onlooker, and employed bees. The scout bees are responsible for
exploring the search space, whereas onlooker and employed bees
exploit the promising solutions found by scout bees. Finally, the
Bat-inspired Algorithm (BA), inspired by the echolocation behavior
of bats, has been proposed recently [33]. There are many types of
bats in the nature. They are different in terms of size and weight,
but they all have quite similar behaviors when navigating and
hunting. Bats utilize natural sonar in order to do this. The two main
characteristics of bats when finding prey have been adopted in
designing the BA algorithm. Bats tend to decrease the loudness
and increase the rate of emitted ultrasonic sound when they chase
prey. This behavior has been mathematically modeled for the BA
algorithm. The rest of the SI techniques proposed so far are as
follows:

� Marriage in Honey Bees Optimization Algorithm (MBO) in 2001
[34].
� Artificial Fish-Swarm Algorithm (AFSA) in 2003 [35].
� Termite Algorithm in 2005 [36].
� Wasp Swarm Algorithm in 2007 [37].
� Monkey Search in 2007 [38].
� Bee Collecting Pollen Algorithm (BCPA) in 2008 [39].
� Cuckoo Search (CS) in 2009 [40].
� Dolphin Partner Optimization (DPO) in 2009 [41].
� Firefly Algorithm (FA) in 2010 [42].
� Bird Mating Optimizer (BMO) in 2012 [43].
� Krill Herd (KH) in 2012 [44].
� Fruit fly Optimization Algorithm (FOA) in 2012 [45].

This list shows that there are many SI techniques proposed so
far, many of them inspired by hunting and search behaviors. To
the best of our knowledge, however, there is no SI technique in
the literature mimicking the leadership hierarchy of grey wolves,
well known for their pack hunting. This motivated our attempt
to mathematically model the social behavior of grey wolves, pro-
pose a new SI algorithm inspired by grey wolves, and investigate
its abilities in solving benchmark and real problems.
3. Grey Wolf Optimizer (GWO)

In this section the inspiration of the proposed method is first
discussed. Then, the mathematical model is provided.
Fig. 1. Hierarchy of grey wolf (dominance decreases from top down).
3.1. Inspiration

Grey wolf (Canis lupus) belongs to Canidae family. Grey wolves
are considered as apex predators, meaning that they are at the top
of the food chain. Grey wolves mostly prefer to live in a pack. The
group size is 5–12 on average. Of particular interest is that they
have a very strict social dominant hierarchy as shown in Fig. 1.

The leaders are a male and a female, called alphas. The alpha is
mostly responsible for making decisions about hunting, sleeping
place, time to wake, and so on. The alpha’s decisions are dictated
to the pack. However, some kind of democratic behavior has also
been observed, in which an alpha follows the other wolves in the
pack. In gatherings, the entire pack acknowledges the alpha by
holding their tails down. The alpha wolf is also called the dominant
wolf since his/her orders should be followed by the pack [46]. The
alpha wolves are only allowed to mate in the pack. Interestingly,
the alpha is not necessarily the strongest member of the pack
but the best in terms of managing the pack. This shows that the
organization and discipline of a pack is much more important than
its strength.

The second level in the hierarchy of grey wolves is beta. The be-
tas are subordinate wolves that help the alpha in decision-making
or other pack activities. The beta wolf can be either male or female,
and he/she is probably the best candidate to be the alpha in case
one of the alpha wolves passes away or becomes very old. The beta
wolf should respect the alpha, but commands the other lower-level
wolves as well. It plays the role of an advisor to the alpha and dis-
cipliner for the pack. The beta reinforces the alpha’s commands
throughout the pack and gives feedback to the alpha.

The lowest ranking grey wolf is omega. The omega plays the
role of scapegoat. Omega wolves always have to submit to all the
other dominant wolves. They are the last wolves that are allowed
to eat. It may seem the omega is not an important individual in
the pack, but it has been observed that the whole pack face internal
fighting and problems in case of losing the omega. This is due to
the venting of violence and frustration of all wolves by the ome-
ga(s). This assists satisfying the entire pack and maintaining the
dominance structure. In some cases the omega is also the babysit-
ters in the pack.

If a wolf is not an alpha, beta, or omega, he/she is called subor-
dinate (or delta in some references). Delta wolves have to submit
to alphas and betas, but they dominate the omega. Scouts, senti-
nels, elders, hunters, and caretakers belong to this category. Scouts
are responsible for watching the boundaries of the territory and
warning the pack in case of any danger. Sentinels protect and guar-
antee the safety of the pack. Elders are the experienced wolves who
used to be alpha or beta. Hunters help the alphas and betas when
hunting prey and providing food for the pack. Finally, the caretak-
ers are responsible for caring for the weak, ill, and wounded wolves
in the pack.

In addition to the social hierarchy of wolves, group hunting is
another interesting social behavior of grey wolves. According to
Muro et al. [47] the main phases of grey wolf hunting are as
follows:

� Tracking, chasing, and approaching the prey.
� Pursuing, encircling, and harassing the prey until it stops

moving.
� Attack towards the prey.

These steps are shown in Fig. 2.
In this work this hunting technique and the social hierarchy of

grey wolves are mathematically modeled in order to design GWO
and perform optimization.

S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61 49

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
3.2. Mathematical model and algorithm

In this subsection the mathematical models of the social hierar-
chy, tracking, encircling, and attacking prey are provided. Then the
GWO algorithm is outlined.

3.2.1. Social hierarchy
In order to mathematically model the social hierarchy of wolves

when designing GWO, we consider the fittest solution as the alpha
(a). Consequently, the second and third best solutions are named
beta (b) and delta (d) respectively. The rest of the candidate solu-
tions are assumed to be omega (x). In the GWO algorithm the
hunting (optimization) is guided by a, b, and d. The x wolves fol-
low these three wolves.

3.2.2. Encircling prey
As mentioned above, grey wolves encircle prey during the hunt.

In order to mathematically model encircling behavior the follow-
ing equations are proposed:

~D ¼ j~C �~XpðtÞ �~XðtÞj ð3:1Þ

~Xðt þ 1Þ ¼ ~XpðtÞ �~A � ~D ð3:2Þ

where t indicates the current iteration, ~A and ~C are coefficient vec-
tors, ~Xp is the position vector of the prey, and ~X indicates the posi-
tion vector of a grey wolf.

The vectors ~A and ~C are calculated as follows:

~A ¼ 2~a �~r1 �~a ð3:3Þ

~C ¼ 2 �~r2 ð3:4Þ

where components of ~a are linearly decreased from 2 to 0 over the
course of iterations and r1, r2 are random vectors in [0,1].

To see the effects of Eqs. (3.1) and (3.2), a two-dimensional po-
sition vector and some of the possible neighbors are illustrated in
Fig. 3(a). As can be seen in this figure, a grey wolf in the position of
(X, Y) can update its position according to the position of the prey
(X�, Y�). Different places around the best agent can be reached with
respect to the current position by adjusting the value of ~A and ~C
vectors. For instance, (X�–X, Y�) can be reached by setting
~A ¼ ð1;0Þ and ~C ¼ ð1;1Þ. The possible updated positions of a grey
wolf in 3D space are depicted in Fig. 3(b). Note that the random
vectors r1 and r2 allow wolves to reach any position between the
Fig. 2. Hunting behavior of grey wolves: (A) chasing, approaching, and tracking prey (
points illustrated in Fig. 3. So a grey wolf can update its position in-
side the space around the prey in any random location by using
Eqs. (3.1) and (3.2).

The same concept can be extended to a search space with n
dimensions, and the grey wolves will move in hyper-cubes (or hy-
per-spheres) around the best solution obtained so far.

3.2.3. Hunting
Grey wolves have the ability to recognize the location of prey

and encircle them. The hunt is usually guided by the alpha. The
beta and delta might also participate in hunting occasionally. How-
ever, in an abstract search space we have no idea about the loca-
tion of the optimum (prey). In order to mathematically simulate
the hunting behavior of grey wolves, we suppose that the alpha
(best candidate solution) beta, and delta have better knowledge
about the potential location of prey. Therefore, we save the first
three best solutions obtained so far and oblige the other search
agents (including the omegas) to update their positions according
to the position of the best search agents. The following formulas
are proposed in this regard.

~Da ¼ j~C1 �~Xa �~Xj; ~Db ¼ j~C2 �~Xb �~Xj; ~Dd ¼ j~C3 �~Xd �~Xj ð3:5Þ

~X1 ¼ ~Xa �~A1 � ð~DaÞ;~X2 ¼ ~Xb �~A2 � ð~DbÞ;~X3 ¼ ~Xd �~A3 � ð~DdÞ ð3:6Þ

~Xðt þ 1Þ ¼
~X1 þ~X2 þ~X3

3
ð3:7Þ

Fig. 4 shows how a search agent updates its position according to
alpha, beta, and delta in a 2D search space. It can be observed that
the final position would be in a random place within a circle which
is defined by the positions of alpha, beta, and delta in the search
space. In other words alpha, beta, and delta estimate the position
of the prey, and other wolves updates their positions randomly
around the prey.

3.2.4. Attacking prey (exploitation)
As mentioned above the grey wolves finish the hunt by attack-

ing the prey when it stops moving. In order to mathematically
model approaching the prey we decrease the value of ~a. Note that
the fluctuation range of~A is also decreased by~a. In other words~A is
a random value in the interval [�2a, 2a] where a is decreased from
2 to 0 over the course of iterations. When random values of~A are in
[�1,1], the next position of a search agent can be in any position
B–D) pursuiting, harassing, and encircling (E) stationary situation and attack [47].

X*-X

Y*-Y

(X,Y)

(X*,Y*)

(X*,Y)

(X,Y*)

(X,Y*-Y)

(X*-X,Y)

(X*,Y*-Y)(X*-X,Y*-Y)

(X*-X,Y*)

(X,Y,Z)

(X*,Y*,Z*)

(X,Y*-Y,Z*-Z)

(X*-X,Y,Z*-Z)

(X*,Y*-Y,Z*-Z)(X*-X,Y*-Y,Z-Z*)

(X*-X,Y*,Z*-Z)

(X,Y*,Z)

(X,Y*-Y,Z)

(X,Y*,Z*)

(X,Y,Z*)

(X*,Y*,Z*-Z) (X,Y*,Z*-Z)

(X*,Y,Z*-Z) (X,Y,Z*-Z)

(X*-X,Y,Z*)

(X*-X,Y,Z) (X*,Y,Z)

(X,Y,Z*)(X*,Y,Z*)

(a) (b)
Fig. 3. 2D and 3D position vectors and their possible next locations.

Ddelta

Dalpha

a1

a3

Dbeta

C3

C1

C2

a2

Move

R

or any other hunters

Estimated position of the
prey

Fig. 4. Position updading in GWO.

If |
A|<

1

If |
A|>

1

50 S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
between its current position and the position of the prey. Fig. 5(a)
shows that |A| < 1 forces the wolves to attack towards the prey.

With the operators proposed so far, the GWO algorithm allows
its search agents to update their position based on the location of
the alpha, beta, and delta; and attack towards the prey. However,
the GWO algorithm is prone to stagnation in local solutions with
these operators. It is true that the encircling mechanism proposed
shows exploration to some extent, but GWO needs more operators
to emphasize exploration.
(a) (b)
Fig. 5. Attacking prey versus searching for prey.
3.2.5. Search for prey (exploration)
Grey wolves mostly search according to the position of the al-

pha, beta, and delta. They diverge from each other to search for
prey and converge to attack prey. In order to mathematically mod-
el divergence, we utilize ~A with random values greater than 1 or
less than -1 to oblige the search agent to diverge from the prey.
This emphasizes exploration and allows the GWO algorithm to
search globally. Fig. 5(b) also shows that |A| > 1 forces the grey
wolves to diverge from the prey to hopefully find a fitter prey.
Another component of GWO that favors exploration is ~C. As may
be seen in Eq. (3.4), the ~C vector contains random values in [0,2].
This component provides random weights for prey in order to sto-
chastically emphasize (C > 1) or deemphasize (C < 1) the effect of
prey in defining the distance in Eq. (3.1). This assists GWO to show

S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61 51

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
a more random behavior throughout optimization, favoring explo-
ration and local optima avoidance. It is worth mentioning here that
C is not linearly decreased in contrast to A. We deliberately require
C to provide random values at all times in order to emphasize
exploration not only during initial iterations but also final itera-
tions. This component is very helpful in case of local optima stag-
nation, especially in the final iterations.

The C vector can be also considered as the effect of obstacles to
approaching prey in nature. Generally speaking, the obstacles in
nature appear in the hunting paths of wolves and in fact prevent
them from quickly and conveniently approaching prey. This is ex-
actly what the vector C does. Depending on the position of a wolf, it
can randomly give the prey a weight and make it harder and far-
ther to reach for wolves, or vice versa.

To sum up, the search process starts with creating a random
population of grey wolves (candidate solutions) in the GWO algo-
rithm. Over the course of iterations, alpha, beta, and delta wolves
estimate the probable position of the prey. Each candidate solution
updates its distance from the prey. The parameter a is decreased
from 2 to 0 in order to emphasize exploration and exploitation,
respectively. Candidate solutions tend to diverge from the prey
when j~Aj > 1 and converge towards the prey when j~Aj < 1. Finally,
the GWO algorithm is terminated by the satisfaction of an end
criterion.

The pseudo code of the GWO algorithm is presented in Fig. 6.
To see how GWO is theoretically able to solve optimization

problems, some points may be noted:

� The proposed social hierarchy assists GWO to save the best
solutions obtained so far over the course of iteration.
� The proposed encircling mechanism defines a circle-shaped

neighborhood around the solutions which can be extended to
higher dimensions as a hyper-sphere.
� The random parameters A and C assist candidate solutions to

have hyper-spheres with different random radii.
� The proposed hunting method allows candidate solutions to

locate the probable position of the prey.
� Exploration and exploitation are guaranteed by the adaptive

values of a and A.
� The adaptive values of parameters a and A allow GWO to

smoothly transition between exploration and exploitation.
� With decreasing A, half of the iterations are devoted to explora-

tion (|A| P 1) and the other half are dedicated to exploitation
(|A| < 1).
� The GWO has only two main parameters to be adjusted (a and

C).

There are possibilities to integrate mutation and other evolu-
tionary operators to mimic the whole life cycle of grey wolves.
Fig. 6. Pseudo code of the GWO algorithm.
However, we have kept the GWO algorithm as simple as possible
with the fewest operators to be adjusted. Such mechanisms are
recommended for future work. The source codes of this algorithm
can be found in http://www.alimirjalili.com/GWO.html and http://
www.mathworks.com.au/matlabcentral/fileexchange/44974.

4. Results and discussion

In this section the GWO algorithm is benchmarked on 29 bench-
mark functions. The first 23 benchmark functions are the classical
functions utilized by many researchers [16,48–51,82]. Despite the
simplicity, we have chosen these test functions to be able to compare
our results to those of the current meta-heuristics. These benchmark
functions are listed in Tables 1–3 where Dim indicates dimension of
the function, Range is the boundary of the function’s search space,
and fmin is the optimum. The other test beds that we have chosen
are six composite benchmark functions from a CEC 2005 special ses-
sion [52]. These benchmark functions are the shifted, rotated, ex-
panded, and combined variants of the classical functions which
offer the greatest complexity among the current benchmark func-
tions [53]. Tables 4 lists the CEC 2005 test functions, where Dim indi-
cates dimension of the function, Range is the boundary of the
function’s search space, and fmin is the optimum. Figs. 7–10 illustrate
the 2D versions of the benchmark functions used.

Generally speaking, the benchmark functions used are minimi-
zation functions and can be divided into four groups: unimodal,
multimodal, fixed-dimension multimodal, and composite func-
tions. Note that a detailed descriptions of the composite bench-
mark functions are available in the CEC 2005 technical report [52].

The GWO algorithm was run 30 times on each benchmark func-
tion. The statistical results (average and standard deviation) are re-
ported in Tables 5–8. For verifying the results, the GWO algorithm
is compared to PSO [3] as an SI-based technique and GSA [24] as a
physics-based algorithm. In addition, the GWO algorithm is com-
pared with three EAs: DE [15], Fast Evolutionary Programing
(FEP) [16], and Evolution Strategy with Covariance Matrix Adapta-
tion (CMA-ES) [18].

4.1. Exploitation analysis

According to the results of Table 5, GWO is able to provide very
competitive results. This algorithm outperforms all others in F1, F2,
and F7. It may be noted that the unimodal functions are suitable for
benchmarking exploitation. Therefore, these results show the
superior performance of GWO in terms of exploiting the optimum.
This is due to the proposed exploitation operators previously
discussed.

4.2. Exploration analysis

In contrast to the unimodal functions, multimodal functions
have many local optima with the number increasing exponentially
with dimension. This makes them suitable for benchmarking the
Table 1
Unimodal benchmark functions.

Function Dim Range fmin

f1ðxÞ ¼
Pn

i¼1x2
i

30 [�100,100] 0

f2ðxÞ ¼
Pn

i¼1jxij þ
Qn

i¼1jxij 30 [�10,10] 0

f3ðxÞ ¼
Pn

i¼1ð
Pi

j�1xjÞ
2 30 [�100,100] 0

f4ðxÞ ¼maxifjxij;1 6 i 6 ng 30 [�100,100] 0

f5ðxÞ ¼
Pn�1

i¼1 ½100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2� 30 [�30,30] 0

f6ðxÞ ¼
Pn

i¼1ð½xi þ 0:5�Þ2 30 [�100,100] 0

f7ðxÞ ¼
Pn

i¼1ix4
i þ random½0;1Þ 30 [�1.28,1.28] 0

http://www.alimirjalili.com/GWO.html
http://www.mathworks.com.au/matlabcentral/fileexchange/44974
http://www.mathworks.com.au/matlabcentral/fileexchange/44974

Table 2
Multimodal benchmark functions.

Function Dim Range fmin

F8ðxÞ ¼
Pn

i¼1 � xi sinð
ffiffiffiffiffiffiffi
jxij

p
Þ 30 [�500,500] �418.9829 � 5

F9ðxÞ ¼
Pn

i¼1½x2
i � 10 cosð2pxiÞ þ 10� 30 [�5.12,5.12] 0

F10ðxÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x2

i

q� �
� exp 1

n

Pn
i¼1 cosð2pxiÞ

� �
þ 20þ e 30 [�32,32] 0

F11ðxÞ ¼ 1
4000

Pn
i¼1x2

i �
Qn

i¼1 cos xiffi
i
p
� �

þ 1 30 [�600,600] 0

F12ðxÞ ¼ p
n f10 sinðpy1Þ þ

Pn�1
i¼1 ðyi � 1Þ2½1þ 10 sin2ðpyiþ1Þ� þ ðyn � 1Þ2g þ

Pn
i¼1uðxi;10;100;4Þ 30 [�50,50] 0

yi ¼ 1þ xiþ1
4

uðxi; a; k;mÞ ¼
kðxi � aÞm xi > a
0 �a < xi < a
kð�xi � aÞm xi < �a

8<
:

F13ðxÞ ¼ 0:1fsin2ð3px1Þ þ
Pn

i¼1ðxi � 1Þ2½1þ sin2ð3pxi þ 1Þ� þ ðxn � 1Þ2½1þ sin2ð2pxnÞ�g þ
Pn

i¼1uðxi;5;100;4Þ 30 [�50,50] 0

F14ðxÞ ¼ �
Pn

i¼1 sinðxiÞ � sin i:x2
i

p

� �� �2m
; m ¼ 10

30 [0,p] �4.687

F15ðxÞ ¼ e�
Pn

i¼1
ðxi=bÞ2m

� 2e�
Pn

i¼1
x2

i

h i
�
Qn

i¼1 cos2 xi; m ¼ 5 30 [�20,20] �1

F16ðxÞ ¼ f½
Pn

i¼1 sin2ðxiÞ� � expð�
Pn

i¼1x2
i Þg � exp½�

Pn
i¼1 sin2 ffiffiffiffiffiffiffi

jxij
p

� 30 [�10,10] �1

Table 3
Fixed-dimension multimodal benchmark functions.

Function Dim Range fmin

F14ðxÞ ¼ 1
500þ

P25
j¼1

1
jþ
P2

i¼1
ðxi�aijÞ6

� ��1 2 [�65,65] 1

F15ðxÞ ¼
P11

i¼1 ai � x1ðb2
i þbi x2Þ

b2
i þbi x3þx4

	
2 4 [�5,5] 0.00030

F16ðxÞ ¼ 4x2
1 � 2:1x4

1 þ 1
3 x6

1 þ x1x2 � 4x2
2 þ 4x4

2
2 [�5,5] �1.0316

F17ðxÞ ¼ x2 � 5:1
4p2 x2

1 þ 5
p x1 � 6

� �2
þ 10 1� 1

8p
� �

cos x1 þ 10
2 [�5,5] 0.398

F18ðxÞ ¼ ½1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 3x2
1 � 14x2 þ 6x1x2 þ 3x2

2Þ� � ½30þ ð2x1 � 3x2Þ2 � ð18� 32x1 þ 12x2
1 þ 48x2 � 36x1x2 þ 27x2

2Þ� 2 [�2,2] 3

F19ðxÞ ¼ �
P4

i¼1ci expð�
P3

j¼1aijðxj � pijÞ
2Þ 3 [1,3] �3.86

F20ðxÞ ¼ �
P4

i¼1ci expð�
P6

j¼1aijðxj � pijÞ
2Þ 6 [0, 1] �3.32

F21ðxÞ ¼ �
P5

i¼1½ðX � aiÞðX � aiÞT þ ci�
�1 4 [0, 10] �10.1532

F22ðxÞ ¼ �
P7

i¼1½ðX � aiÞðX � aiÞT þ ci�
�1 4 [0, 10] �10.4028

F23ðxÞ ¼ �
P10

i¼1½ðX � aiÞðX � aiÞT þ ci�
�1 4 [0, 10] �10.5363

52 S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
exploration ability of an algorithm. According to the results of
Tables 6 and 7, GWO is able to provide very competitive results
on the multimodal benchmark functions as well. This algorithm
outperforms PSO and GSA on the majority of the multimodal func-
tions. Moreover, GWO shows very competitive results compare to
DE and FEP; and outperforms them occasionally. These results
show that the GWO algorithm has merit in terms of exploration.
4.3. Local minima avoidance

The fourth class of benchmark functions employed includes
composite functions, generally very challenging test beds for
meta-heuristic algorithms. So, exploration and exploitation can
be simultaneously benchmarked by the composite functions.
Moreover, the local optima avoidance of an algorithm can be
examined due to the massive number of local optima in such test
functions. According to Table 8, GWO outperforms all others on
half of the composite benchmark functions. The GWO algorithm
also provides very competitive results on the remaining composite
benchmark functions. This demonstrates that GWO shows a good
balance between exploration and exploitation that results in high
local optima avoidance. This superior capability is due to the adap-
tive value of A. As mentioned above, half of the iterations are de-
voted to exploration (|A| P 1) and the rest to exploitation
(|A| < 1). This mechanism assists GWO to provide very good explo-
ration, local minima avoidance, and exploitation simultaneously.
4.4. Convergence behavior analysis

In this subsection the convergence behavior of GWO is investi-
gated. According to Berg et al. [54], there should be abrupt changes
in the movement of search agents over the initial steps of optimi-
zation. This assists a meta-heuristic to explore the search space
extensively. Then, these changes should be reduced to emphasize
exploitation at the end of optimization. In order to observe the con-
vergence behavior of the GWO algorithm, the search history and
trajectory of the first search agent in its first dimension are illus-
trated in Fig. 11. The animated versions of this figure can be found
in Supplementary Materials. Note that the benchmark functions
are shifted in this section, and we used six search agents to find
the optima.

The second column of Fig. 11 depicts the search history of the
search agents. It may be observed that the search agents of GWO
tend to extensively search promising regions of the search spaces
and exploit the best one. In addition, the fourth column of Fig. 11
shows the trajectory of the first particle, in which changes of the
first search agent in its first dimension can be observed. It can be
seen that there are abrupt changes in the initial steps of iterations
which are decreased gradually over the course of iterations.
According to Berg et al. [54], this behavior can guarantee that a
SI algorithm eventually convergences to a point in search space.

To sum up, the results verify the performance of the GWO algo-
rithm in solving various benchmark functions compared to well-
known meta-heuristics. To further investigate the performance of

Table 4
Composite benchmark functions.

Function Dim Range fmin

F24(CF1):
f1, f2, f3, . . ., f10 = Sphere Function 10 [�5,5] 0
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1�
[k1, k2, k3 . . ., k10] = [5/100, 5/100, 5/100, . . ., 5/100]

F25(CF2):
f1, f2, f3, . . ., f10 = Griewank’s Function 10 [�5,5] 0
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1�
[k1, k2, k3, . . ., k10] = [5/100, 5/100, 5/100, . . ., 5/100]

F26(CF3):
f1, f2, f3, . . ., f10 = Griewank’s Function 10 [�5,5] 0
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1�
[k1, k2, k3, . . ., k10] = [1, 1, 1, . . ., 1]

F27(CF4):
f1, f2 = Ackley’s Function 10 [�5,5] 0
f3, f4 = Rastrigin’s Function
f5, f6 = Weierstras’s Function
f7, f8 = Griewank’s Function
f9, f10 = Sphere Function
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1�
[k1, k2, k3, . . ., k10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/100, 5/100, 5/100]

F28(CF5):
f1, f2 = Rastrigin’s Function 10 [�5,5] 0
f3, f4 = Weierstras’s Function
f5, f6 = Griewank’s Function
f7, f8 = Ackley’s Function
f9, f10 = Sphere Function
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1�
[k1, k2, k3, . . ., k10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]

f29(CF6):
f1, f2 = Rastrigin’s Function 10 [�5,5] 0
f3, f4 = Weierstras’s Function
f5, f6 = Griewank’s Function
f7, f8 = Ackley’s Function
f9, f10 = Sphere Function
½,1; ,2; ,3; . . . ; ,10� ¼ ½0:1;0:2;0:3;0:4;0:5;0:6;0:7;0:8;0:9;1�
[k1, k2, k3, . . ., k10] = [0.1 � 1/5, 0.2 � 1/5, 0.3 � 5/0.5, 0.4 � 5/0.5, 0.5 � 5/100, 0.6 � 5/100, 0.7 � 5/32, 0.8 � 5/32, 0.9 � 5/100, 1 � 5/100]

(F1) (F2) (F3) (F4)

(F5) (F6) (F7)

Fig. 7. 2-D versions of unimodal benchmark functions.

S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61 53

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
the proposed algorithm, three classical engineering design prob-
lems and a real problem in optical engineering are employed in
the following sections. The GWO algorithm is also compared with
well-known techniques to confirm its results.
5. GWO for classical engineering problems

In this section three constrained engineering design problems:
tension/compression spring, welded beam, and pressure vessel
designs, are employed. These problems have several equality and
inequality constraints, so the GWO should be equipped with a con-
straint handling method to be able to optimize constrained prob-
lems as well. Generally speaking, constraint handling becomes
very challenging when the fitness function directly affects the posi-
tion updating of the search agents (GSA for instance). For the fitness
independent algorithms, however, any kind of constraint handling
can be employed without the need to modify the mechanism of
the algorithm (GA and PSO for instance). Since the search agents of
the proposed GWO algorithm update their positions with respect

(F8) (F9) (F10) (F11)

 (F12) (F13)

Fig. 8. 2-D versions of multimodal benchmark functions.

(F14) (F16) (F17) (F18)

Fig. 9. 2-D version of fixed-dimension multimodal benchmark functions.

(F24) (F25) (F26)

(F27) (F28) (F29)

Fig. 10. 2-D versions of composite benchmark functions.

Table 5
Results of unimodal benchmark functions.

F GWO PSO GSA DE FEP

Ave Std Ave Std Ave Std Ave Std Ave Std

F1 6.59E�28 6.34E�05 0.000136 0.000202 2.53E�16 9.67E�17 8.2E�14 5.9E�14 0.00057 0.00013
F2 7.18E�17 0.029014 0.042144 0.045421 0.055655 0.194074 1.5E�09 9.9E�10 0.0081 0.00077
F3 3.29E�06 79.14958 70.12562 22.11924 896.5347 318.9559 6.8E�11 7.4E�11 0.016 0.014
F4 5.61E�07 1.315088 1.086481 0.317039 7.35487 1.741452 0 0 0.3 0.5
F5 26.81258 69.90499 96.71832 60.11559 67.54309 62.22534 0 0 5.06 5.87
F6 0.816579 0.000126 0.000102 8.28E�05 2.5E�16 1.74E�16 0 0 0 0
F7 0.002213 0.100286 0.122854 0.044957 0.089441 0.04339 0.00463 0.0012 0.1415 0.3522

54 S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
to the alpha, beta, and delta locations, there is no direct relation be-
tween the search agents and the fitness function. So the simplest
constraint handling method, penalty functions, where search agents
are assigned big objective function values if they violate any of the
constraints, can be employed effectively to handle constraints in
GWO. In this case, if the alpha, beta, or delta violate constraints, they

Table 6
Results of multimodal benchmark functions.

F GWO PSO GSA DE FEP

Ave Std Ave Std Ave Std Ave Std Ave Std

F8 �6123.1 �4087.44 �4841.29 1152.814 �2821.07 493.0375 �11080.1 574.7 �12554.5 52.6
F9 0.310521 47.35612 46.70423 11.62938 25.96841 7.470068 69.2 38.8 0.046 0.012
F10 1.06E�13 0.077835 0.276015 0.50901 0.062087 0.23628 9.7E�08 4.2E�08 0.018 0.0021
F11 0.004485 0.006659 0.009215 0.007724 27.70154 5.040343 0 0 0.016 0.022
F12 0.053438 0.020734 0.006917 0.026301 1.799617 0.95114 7.9E�15 8E�15 9.2E�06 3.6E�06
F13 0.654464 0.004474 0.006675 0.008907 8.899084 7.126241 5.1E�14 4.8E�14 0.00016 0.000073

Table 7
Results of fixed-dimension multimodal benchmark functions.

F GWO PSO GSA DE FEP

Ave Std Ave Std Ave Std Ave Std Ave Std

F14 4.042493 4.252799 3.627168 2.560828 5.859838 3.831299 0.998004 3.3E�16 1.22 0.56
F15 0.000337 0.000625 0.000577 0.000222 0.003673 0.001647 4.5E�14 0.00033 0.0005 0.00032
F16 �1.03163 �1.03163 �1.03163 6.25E�16 �1.03163 4.88E�16 �1.03163 3.1E�13 �1.03 4.9E�07
F17 0.397889 0.397887 0.397887 0 0.397887 0 0.397887 9.9E�09 0.398 1.5E�07
F18 3.000028 3 3 1.33E�15 3 4.17E�15 3 2E�15 3.02 0.11
F19 �3.86263 �3.86278 �3.86278 2.58E�15 �3.86278 2.29E�15 N/A N/A �3.86 0.000014
F20 �3.28654 �3.25056 �3.26634 0.060516 �3.31778 0.023081 N/A N/A �3.27 0.059
F21 �10.1514 �9.14015 �6.8651 3.019644 �5.95512 3.737079 �10.1532 0.0000025 �5.52 1.59
F22 �10.4015 �8.58441 �8.45653 3.087094 �9.68447 2.014088 �10.4029 3.9E�07 �5.53 2.12
F23 �10.5343 �8.55899 �9.95291 1.782786 �10.5364 2.6E�15 �10.5364 1.9E�07 �6.57 3.14

S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61 55

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
are automatically replaced with a new search agent in the next iter-
ation. Any kind of penalty function can readily be employed in order
to penalize search agents based on their level of violation. In this
case, if the penalty makes the alpha, beta, or delta less fit than any
other wolves, it is automatically replaced with a new search agent
in the next iteration. We used simple, scalar penalty functions for
the rest of problems except the tension/compression spring design
problem which uses a more complex penalty function.

5.1. Tension/compression spring design

The objective of this problem is to minimize the weight of a ten-
sion/compression spring as illustrated in Fig. 12 [55–57]. The min-
imization process is subject to some constraints such as shear
stress, surge frequency, and minimum deflection. There are three
variables in this problem: wire diameter (d), mean coil diameter
(D), and the number of active coils (N). The mathematical formula-
tion of this problem is as follows:

Consider ~x ¼ ½x1 x2 x3� ¼ ½dDN�;
Minimize f ð~xÞ ¼ ðx3 þ 2Þx2x2

1;

Subject to g1ð~xÞ ¼ 1� x3
2x3

71785x4
1
6 0;

g2ð~xÞ ¼
4x2

2�x1x2

12566ðx2x3
1�x4

1Þ
þ 1

5108x2
1
6 0;

g2ð~xÞ ¼
4x2

2�x1x2

12566ðx2x3
1�x4

1Þ
þ 1

5108x2
1
6 0;

g3ð~xÞ ¼ 1� 140:45x1
x2

2
x3
6 0;

g4ð~xÞ ¼ x1þx2
1:5 � 1 6 0;

Variable range 0:05 6 x1 6 2:00;
0:25 6 x2 6 1:30;
2:00 6 x3 6 15:0

ð5:1Þ

This problem has been tackled by both mathematical and heuristic
approaches. Ha and Wang tried to solve this problem using PSO
[58]. The Evolution Strategy (ES) [59], GA [60], Harmony Search
(HS) [61], and Differential Evolution (DE) [62] algorithms have
also been employed as heuristic optimizers for this problem. The
mathematical approaches that have been adopted to solve this
problem are the numerical optimization technique (constraints
correction at constant cost) [55] and mathematical optimization
technique [56]. The comparison of results of these techniques and
GWO are provided in Table 9. Note that we use a similar penalty
function for GWO to perform a fair comparison [63]. Table 9
suggests that GWO finds a design with the minimum weight for this
problem.

5.2. Welded beam design

The objective of this problem is to minimize the fabrication cost
of a welded beam as shown in Fig. 13 [60]. The constraints are as
follows:

� Shear stress (s).
� Bending stress in the beam (h).
� Buckling load on the bar (Pc).
� End deflection of the beam (d).
� Side constraints.

This problem has four variables such as thickness of weld (h),
length of attached part of bar (l), the height of the bar (t), and thick-
ness of the bar (b). The mathematical formulation is as follows:

Consider ~x ¼ ½x1 x2 x3 x4� ¼ ½hltb�;
Minimize ðf~xÞ ¼ 1:10471x2

1x2 þ 0:04811x3x4ð14:0þ x2Þ;
Subject to g1ð~xÞ ¼ sð~xÞ � smax 6 0;

g2ð~xÞ ¼ rð~xÞ � rmax 6 0;
g3ð~xÞ ¼ dð~xÞ � dmax 6 0;
g4ð~xÞ ¼ x1 � x4 6 0;
g5ð~xÞ ¼ P � Pcð~xÞ 6 0;
g6ð~xÞ ¼ 0:125� x1 6 0
g7ð~xÞ ¼ 1:10471x2

1 þ 0:04811x3x4ð14:0þ x2Þ � 5:0 6 0

ð5:2Þ

Variable range 0:1 6 x1 6 2;
0:1 6 x2 6 10;
0:1 6 x3 6 10;
0:1 6 x4 6 2

Table 8
Results of composite benchmark functions.

F GWO PSO GSA DE CMA-ES

Ave Std Ave Std Ave Std Ave Std Ave Std

F24 43.83544 69.86146 100 81.65 6.63E�17 2.78E�17 6.75E�02 1.11E�01 100 188.56
F25 91.80086 95.5518 155.91 13.176 200.6202 67.72087 28.759 8.6277 161.99 151
F26 61.43776 68.68816 172.03 32.769 180 91.89366 144.41 19.401 214.06 74.181
F27 123.1235 163.9937 314.3 20.066 170 82.32726 324.86 14.784 616.4 671.92
F28 102.1429 81.25536 83.45 101.11 200 47.14045 10.789 2.604 358.3 168.26
F29 43.14261 84.48573 861.42 125.81 142.0906 88.87141 490.94 39.461 900.26 8.32E�02

56 S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
where sð~xÞ ¼
ffi
ðs0Þ2 þ 2s0s00 x2

2Rþ ðs00Þ
2

q
;

s0 ¼ Pffiffi
2
p

x1 x2
; s00 ¼ MR

J ;M ¼ PðLþ x2
2 Þ;

R ¼
ffi
x2

2
4 þ

x1þx3
2

� �2
q

;

J ¼ 2
ffiffiffi
2
p

x1x2
x2

2
4 þ

x1þx3
2

� �2
h in o

;

rð~xÞ ¼ 6PL
x4 x2

3
; dð~xÞ ¼ 6PL3

Ex2
3 x4

Pcð~xÞ ¼
4:013E

ffiffiffiffiffiffi
x2
3

x6
4

36

q
L2 1� x3

2L

ffiffiffiffi
E

4G

q� �
;

P ¼ 6000 lb; L ¼ 14 in:; dmax ¼ 0:25 in: ; E ¼ 30� 16 psi;G ¼ 12� 106 psi;
smax ¼ 13600 psi; rmax ¼ 30000 psi

Coello [64] and Deb [65,66] employed GA, whereas Lee and Geem
[67] used HS to solve this problem. Richardson’s random method,
Simplex method, Davidon-Fletcher-Powell, Griffith and Stewart’s
successive linear approximation are the mathematical approaches
that have been adopted by Ragsdell and Philips [68] for this prob-
lem. The comparison results are provided in Table 10. The results
show that GWO finds a design with the minimum cost compared
to others.
5.3. Pressure vessel design

The objective of this problem is to minimize the total cost con-
sisting of material, forming, and welding of a cylindrical vessel as
Fig. 11. Search history and trajectory of th
in Fig. 14. Both ends of the vessel are capped, and the head has a
hemi-spherical shape. There are four variables in this problem:

� Thickness of the shell (Ts).
� Thickness of the head (Th).
� Inner radius (R).
� Length of the cylindrical section without considering the head

(L).

This problem is subject to four constraints. These constraints
and the problem are formulated as follows:

Consider ~x¼ ½x1 x2 x3 x4� ¼ ½TsThRL�;
Minimize f ð~xÞ¼0:6224x1x3x4þ1:7781x2x2

3þ3:1661x2
1x4þ19:84x2

1x3;

Subject to g1ð~xÞ ¼�x1þ0:0193x3 6 0;
g2ð~xÞ¼�x3þ0:00954x3 60;
g3ð~xÞ¼�px2

3x4� 4
3px3

3þ129600060;
g4ð~xÞ¼ x4�24060;

ð5:3Þ

Variable range 0 6 x1 6 99;
0 6 x2 6 99;
10 6 x3 6 200;
10 6 x4 6 200;
e first particle in the first dimension.

Fig. 11 (continued)

Fig. 12. Tension/compression spring: (a) shematic, (b) stress heatmap (c) displacement heatmap.

S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61 57

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
This problem has also been popular among researchers and
optimized in various studies. The heuristic methods that have been
adopted to optimize this problem are: PSO [58], GA [57,60,69], ES
[59], DE [62], and ACO [70]. Mathematical methods used are aug-
mented Lagrangian Multiplier [71] and branch-and-bound [72]. The
results of this problem are provided in Table 11. According to this ta-
ble, GWO is again able to find a design with the minimum cost.
In summary, the results on the three classical engineering prob-
lems demonstrate that GWO shows high performance in solving
challenging problems. This is again due to the operators that are
designed to allow GWO to avoid local optima successfully and con-
verge towards the optimum quickly. The next section probes the
performance of the GWO algorithm in solving a recent real prob-
lem in the field of optical engineering.

Table 9
Comparison of results for tension/compression spring design problem.

Algorithm Optimum variables Optimum
weight

d D N

GWO 0.05169 0.356737 11.28885 0.012666
GSA 0.050276 0.323680 13.525410 0.0127022
PSO (Ha and Wang) 0.051728 0.357644 11.244543 0.0126747
ES (Coello and Montes) 0.051989 0.363965 10.890522 0.0126810
GA (Coello) 0.051480 0.351661 11.632201 0.0127048
HS (Mahdavi et al.) 0.051154 0.349871 12.076432 0.0126706
DE (Huang et al.) 0.051609 0.354714 11.410831 0.0126702
Mathematical

optimization
(Belegundu)

0.053396 0.399180 9.1854000 0.0127303

Constraint correction
(Arora)

0.050000 0.315900 14.250000 0.0128334

Table 10
Comparison results of the welded beam design problem.

Algorithm Optimum variables Optimum
cost

h l t b

GWO 0.205676 3.478377 9.03681 0.205778 1.72624
GSA 0.182129 3.856979 10.00000 0.202376 1.879952
GA (Coello) N/A N/A N/A N/A 1.8245
GA (Deb) N/A N/A N/A N/A 2.3800
GA (Deb) 0.2489 6.1730 8.1789 0.2533 2.4331
HS (Lee and

Geem)
0.2442 6.2231 8.2915 0.2443 2.3807

Random 0.4575 4.7313 5.0853 0.6600 4.1185
Simplex 0.2792 5.6256 7.7512 0.2796 2.5307
David 0.2434 6.2552 8.2915 0.2444 2.3841
APPROX 0.2444 6.2189 8.2915 0.2444 2.3815

58 S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
6. Real application of GWO in optical engineering (optical buffer
design)

The problem investigated in this section is called optical buffer
design. In fact, an optical buffer is one of the main components of
optical CPUs. The optical buffer slows the group velocity of light
and allows the optical CPUs to process optical packets or adjust
its timing. The most popular device to do this is a Photonic Crystal
Waveguide (PCW). PCWs mostly have a lattice-shaped structure
with a line defect in the middle. The radii of holes and shape of
the line defect yield different slow light characteristics. Varying ra-
dii and line defects provides different environments for refracting
the light in the waveguide. The researchers in this field try to
manipulate the radii of holes and pins of line defect in order to
achieve desirable optical buffering characteristics. There are also
different types of PCW that are suitable for specific applications.
In this section the structure of a PCW called a Bragg Slot PCW
(BSPCW) is optimized by the GWO algorithm. This problem has
several constraints, so we utilize the simplest constraint handling
method for GWO in this section as well.

BSPCW structure was first proposed by Caer et al. in 2011 [73].
The structure of BSPCWs is illustrated in Fig. 15. The background
slab is silicon with a refractive index equal to 3.48. The slot and
holes are filled by a material with a refractive index of 1.6. The
Bragg slot structure allows the BSPCW to have precise control of
dispersion and slow light properties. The first five holes adjacent
to the slot have the highest impact on slow light properties, as dis-
cussed in [73]. As may be seen in Fig. 15, l, wl, and wh define the
shape of the slot and have an impact on the final dispersion and
slow light properties as well. So, various dispersion and slow light
properties can be achieved by manipulating the radii of holes, l, wl,

and wh.
Fig. 13. Structure of welded beam design (a) shemat
There are two metrics for comparing the performance of slow
light devices: Delay-Bandwidth Product (DBP) and Normalized
DBP (NDBP), which are defined as follows [74]:

DBP ¼ Dt � Df ð6:1Þ

where Dt indicates the delay and Df is the bandwidth of the slow
light device.

In slow light devices the ultimate goal is to achieve maximum
transmission delay of an optical pulse with highest PCW band-
width. Obviously, Dt should be increased in order to increase
DBP. This is achieved by increasing the length of the device (L).
To compare devices with different lengths and operating frequen-
cies, NDBP is a better choice [75]:

NDBP ¼ ng � Dx=x0 ð6:2Þ

where ng is the average of the group index, Dx is the normalized
bandwidth, and x0 is the normalized central frequency of light
wave.

Since NDBP has a direct relation to the group index (ng), can be
formulated as follows [76]:

ng ¼
C
vg
¼ C

dk
dx

ð6:3Þ

where x is the dispersion, k indicates the wave vector, C is the
velocity of light in free space, and shows the group index. Since ng

is changing in the bandwidth range, it should be averaged as
follows:

ng ¼
Z xH

xL

ngðxÞ
dx
Dx

ð6:4Þ

The bandwidth of a PCW refers to the region of the ng curve where
ng has an approximately constant value with a maximum fluctua-
ic (b) stress heatmap (c) displacement heatmap.

Fig. 14. Pressure vessel (a) shematic (b) stress heatmap (c) displacement heatmap.

Table 11
Comparison results for pressure vessel design problem.

Algorithm Optimum variables Optimum cost

Ts Th R L

GWO 0.812500 0.434500 42.089181 176.758731 6051.5639
GSA 1.125000 0.625000 55.9886598 84.4542025 8538.8359
PSO (He and Wang) 0.812500 0.437500 42.091266 176.746500 6061.0777
GA (Coello) 0.812500 0.434500 40.323900 200.000000 6288.7445
GA (Coello and Montes) 0.812500 0.437500 42.097398 176.654050 6059.9463
GA (Deb and Gene) 0.937500 0.500000 48.329000 112.679000 6410.3811
ES (Montes and Coello) 0.812500 0.437500 42.098087 176.640518 6059.7456
DE (Huang et al.) 0.812500 0.437500 42.098411 176.637690 6059.7340
ACO (Kaveh and Talataheri) 0.812500 0.437500 42.103624 176.572656 6059.0888
Lagrangian Multiplier (Kannan) 1.125000 0.625000 58.291000 43.6900000 7198.0428
Branch-bound (Sandgren) 1.125000 0.625000 47.700000 117.701000 8129.1036

2R5

2R4

2R2

2R3

2R1

wh

Si

wl

Filled

l

a Super cell

Fig. 15. BSPCW structure with super cell, nbackground = 3.48 and nfilled = 1.6.

S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61 59

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
tion rage of ±10% [75]. Detailed information about PCWs can be
found in [77–80].

Finally, the problem is mathematically formulated for GWO as
follows:
Table 12
Structural parameters and calculation results.

Structural parameter Wu et al. [81] GWO

R1 – 0.33235a
R2 – 0.24952a
R3 – 0.26837a
R4 – 0.29498a
R5 – 0.34992a
l – 0.7437a
Wh – 0.2014a
Wl – 0.60073a
a(nm) 430 343
�ng 23 19.6
Dk(nm) 17.6 33.9
Order of magnitude of b2 (a/2pc2) 103 103

NDBP 0.26 0.43
Consider : ~x ¼ ½x1 x2 x3 x4 x5 x6 x7 x8� ¼ R1
a

R2
a

R3
a

R4
a

R5
a

l
a

wh
a

wl
a

� �
;

Maximize : f ð~xÞ ¼ NDBP ¼ ngDx
x0

;

Subject to : maxðjb2ðxÞjÞ < 106a=2pc2;

xH < minðxup bandÞ;
xL > maxðxdown bandÞ;
kn > knH ! xGuided mode > xH;

kn < knL ! xGuided mode < xL; ð6:5Þ

where : xH ¼ xðknHÞ ¼ xð1:1ng0Þ;
xL ¼ xðknLÞ ¼ xð0:9ng0Þ;
kn ¼ ka

2p

Dx ¼ xH �xL;

a ¼ x0 � 1550ðnmÞ;

Variable range : 0 6 x1�5 6 0:5;
0 6 x6 6 1;
0 6 x7;8 6 1;

Note that we consider five constraints for the GWO algorithm.
The second to fifth constraints avoid band mixing. To handle feasi-
bility, we assign small negative objective function values (�100) to
those search agents that violate the constraints.

The GWO algorithm was run 20 times on this problem and the
best results obtained are reported in Table 12. Note that the algo-
rithm was run by 24 CPUs on a Windows HPC cluster at Griffith
University. This table shows that there is a substantial, 93% and
65% improvement in bandwidth (Dk) and NDBP utilizing the
GWO algorithm.

The photonic band structure of the BSPCW optimized is shown
in Fig. 16(a). In addition, the corresponded group index and opti-
mized super cell are shown in Figs. 16(b) and 17. These figures
show that the optimized structure has a very good bandwidth
without band mixing as well. This again demonstrated the high
performance of the GWO algorithm in solving real problems.

This comprehensive study shows that the proposed GWO algo-
rithm has merit among the current meta-heuristics. First, the re-

(a) (b)

0.214 0.216 0.218 0.22 0.222 0.224
0

20

40

60

80

100

Normalized Frequency (ω a/2πc=a/)

T
he

 G
ro

up
 I

nd
ex

—
n g

Δω

ω0ωL

ωH

0.25 0.3 0.35 0.4 0.45 0.5
0.16

0.18

0.2

0.22

0.24

0.26

Wavevector--ka/2π

N
or

m
al

iz
ed

 F
re

qu
en

cy
 (

ω
a/

2π
c=

a/
λ)

Guided mode

Light line
of SiO2

Fig. 16. (a) Photonic band structure of the optimized BSPCW structure (b) The group index (ng) of the optimized BSPCW structure.

R5=120 nm

R4=101 nm

R2=84 nm

R3=92 nm

R1=114 nm

l=255 nm

wl=69 nm wh=206 nm

Fig. 17. Optimized super cell of BSPCW.

60 S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
sults of the unconstrained benchmark functions demonstrate the
performance of the GWO algorithm in terms of exploration, exploi-
tation, local optima avoidance, and convergence. Second, the re-
sults of the classical engineering problems show the superior
performance of the proposed algorithm in solving semi-real con-
strained problems. Finally, the results of the optical buffer design
problem show the ability of the GWO algorithm in solving the real
problems.
7. Conclusion

This work proposed a novel SI optimization algorithm inspired
by grey wolves. The proposed method mimicked the social hierar-
chy and hunting behavior of grey wolves. Twenty nine test func-
tions were employed in order to benchmark the performance of
the proposed algorithm in terms of exploration, exploitation, local
optima avoidance, and convergence. The results showed that GWO
was able to provide highly competitive results compared to well-
known heuristics such as PSO, GSA, DE, EP, and ES. First, the results
on the unimodal functions showed the superior exploitation of the
GWO algorithm. Second, the exploration ability of GWO was con-
firmed by the results on multimodal functions. Third, the results
of the composite functions showed high local optima avoidance. Fi-
nally, the convergence analysis of GWO confirmed the convergence
of this algorithm.

Moreover, the results of the engineering design problems also
showed that the GWO algorithm has high performance in un-
known, challenging search spaces. The GWO algorithm was finally
applied to a real problem in optical engineering. The results on this
problem showed a substantial improvement of NDBP compared to
current approaches, showing the applicability of the proposed
algorithm in solving real problems. It may be noted that the results
on semi-real and real problems also proved that GWO can show
high performance not only on unconstrained problems but also
on constrained problems.

For future work, we are going to develop binary and multi-
objective versions of the GWO algorithm.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.advengsoft.2013.
12.007.
References

[1] Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural to
artificial systems: OUP USA; 1999.

[2] Dorigo M, Birattari M, Stutzle T. Ant colony optimization. Comput Intell Magaz,
IEEE 2006;1:28–39.

[3] Kennedy J, Eberhart R. Particle swarm optimization, in Neural Networks, 1995.
In: Proceedings, IEEE international conference on; 1995. p. 1942–1948.

[4] Wolpert DH, Macready WG. No free lunch theorems for optimization. Evolut
Comput, IEEE Trans 1997;1:67–82.

[5] Kirkpatrick S, Jr. DG, Vecchi MP. Optimization by simulated annealing. Science,
vol. 220; 1983. p. 671–80.

[6] Beni G, Wang J. Swarm intelligence in cellular robotic systems. In: Robots and
biological systems: towards a new bionics?, ed. Springer; 1993. p. 703–12.

[7] Basturk B, Karaboga D. An artificial bee colony (ABC) algorithm for numeric
function optimization. In: IEEE swarm intelligence symposium; 2006. p. 12–4.

[8] Olorunda O, Engelbrecht AP. Measuring exploration/exploitation in particle
swarms using swarm diversity. In: Evolutionary computation, 2008. CEC 2008
(IEEE World Congress on Computational Intelligence). IEEE Congress on; 2008.
p. 1128–34.

[9] Alba E, Dorronsoro B. The exploration/exploitation tradeoff in dynamic cellular
genetic algorithms. Evolut Comput, IEEE Trans 2005;9:126–42.

[10] Lin L, Gen M. Auto-tuning strategy for evolutionary algorithms: balancing
between exploration and exploitation. Soft Comput 2009;13:157–68.

[11] Mirjalili S, Hashim SZM. A new hybrid PSOGSA algorithm for function
optimization. In: Computer and information application (ICCIA), 2010
international conference on; 2010. p. 374–77.

http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0010
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0010
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0020
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0020
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0045
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0045
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0050
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0050

S. Mirjalili et al. / Advances in Engineering Software 69 (2014) 46–61 61

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html
[12] Mirjalili S, Mohd Hashim SZ, Moradian Sardroudi H. Training feedforward
neural networks using hybrid particle swarm optimization and gravitational
search algorithm. Appl Math Comput 2012;218:11125–37.

[13] Holland JH. Genetic algorithms. Sci Am 1992;267:66–72.
[14] Goldberg D. Genetic Algorithms in optimization, search and machine learning,

Addison Wesley, New York. In: Eiben AE, Smith JE, editors. 2003 Introduction
to evolutionary computing. Springer. Jacq J, Roux C (1995) Registration of non-
segmented images using a genetic algorithm. Lecture notes in computer
science, vol. 905; 1989. p. 205–11.

[15] Storn R, Price K. Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. J Global Optim 1997;11:341–59.

[16] Yao X, Liu Y, Lin G. Evolutionary programming made faster. Evolut Comput,
IEEE Trans 1999;3:82–102.

[17] Fogel D. Artificial intelligence through simulated evolution. Wiley-IEEE Press;
2009.

[18] Hansen N, Müller SD, Koumoutsakos P. Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-
ES). Evolut Comput 2003;11:1–18.

[19] Rechenberg I. Evolution strategy. Comput Intel Imitat Life 1994;1.
[20] Koza JR. Genetic programming; 1992.
[21] Simon D. Biogeography-based optimization. Evolut Comput IEEE Trans

2008;12:702–13.
[22] Webster B, Bernhard PJ. A local search optimization algorithm based on

natural principles of gravitation. In: Proceedings of the 2003 international
conference on information and knowledge engineering (IKE’03), Las Vegas,
Nevada, USA; 2003. p. 255–61.

[23] Erol OK, Eksin I. A new optimization method: big bang–big crunch. Adv Eng
Softw 2006;37:106–11.

[24] Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search
algorithm. Inf Sci 2009;179:2232–48.

[25] Kaveh A, Talatahari S. A novel heuristic optimization method: charged system
search. Acta Mech 2010;213:267–89.

[26] Formato RA. Central force optimization: a new metaheuristic with applications
in applied electromagnetics. Prog Electromag Res 2007;77:425–91.

[27] Alatas B. ACROA: artificial chemical reaction optimization algorithm for global
optimization. Expert Syst Appl 2011;38:13170–80.

[28] Hatamlou A. Black hole: a new heuristic optimization approach for data
clustering. Inf Sci 2012.

[29] Kaveh A, Khayatazad M. A new meta-heuristic method: ray optimization.
Comput Struct 2012;112:283–94.

[30] Du H, Wu X, Zhuang J. Small-world optimization algorithm for function
optimization. In: Advances in Natural Computation, ed.: Springer; 2006. p.
264–73.

[31] Shah-Hosseini H. Principal components analysis by the galaxy-based search
algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci
Eng 2011;6:132–40.

[32] Moghaddam FF, Moghaddam RF, Cheriet M. Curved space optimization: a
random search based on general relativity theory. arXiv, preprint
arXiv:1208.2214; 2012.

[33] Yang X-S. A new metaheuristic bat-inspired algorithm. In: Nature inspired
cooperative strategies for optimization (NICSO 2010), ed.: Springer; 2010. p.
65–74.

[34] Abbass HA. MBO: Marriage in honey bees optimization – a haplometrosis
polygynous swarming approach. In: Evolutionary computation, 2001.
Proceedings of the 2001 congress on; 2001. p. 207–214.

[35] Li X. A new intelligent optimization-artificial fish swarm algorithm. Doctor
thesis, Zhejiang University of Zhejiang, China; 2003.

[36] Roth M. Termite: a swarm intelligent routing algorithm for mobile wireless
ad-hoc networks; 2005.

[37] Pinto PC, Runkler TA, Sousa JM. Wasp swarm algorithm for dynamic MAX-SAT
problems. In: Adaptive and Natural Computing Algorithms, ed.: Springer;
2007. p. 350–57.

[38] Mucherino A, Seref O. Monkey search: a novel metaheuristic search for global
optimization. In: AIP conference proceedings; 2007. p. 162.

[39] Lu X, Zhou Y. A novel global convergence algorithm: bee collecting pollen
algorithm. In: Advanced intelligent computing theories and applications. With
Aspects of Artificial Intelligence, ed.: Springer; 2008. p. 518–25.

[40] Yang X-S, Deb S. Cuckoo search via Lévy flights. In: Nature & Biologically
Inspired Computing, 2009. NaBIC 2009. World Congress on; 2009. p. 210–14.

[41] Shiqin Y, Jianjun J, Guangxing Y. A dolphin partner optimization. In: Intelligent
systems, 2009. GCIS’09. WRI Global Congress on; 2009. p. 124–28.

[42] Yang X-S. Firefly algorithm, stochastic test functions and design optimisation.
Int J Bio-Inspired Comput 2010;2:78–84.

[43] Askarzadeh A, Rezazadeh A. A new heuristic optimization algorithm for
modeling of proton exchange membrane fuel cell: bird mating optimizer. Int J
Energy Res 2012.

[44] Gandomi AH, Alavi AH. Krill Herd: a new bio-inspired optimization algorithm.
Commun Nonlinear Sci Numer Simul 2012.

[45] Pan W-T. A new fruit fly optimization algorithm: taking the financial distress
model as an example. Knowl-Based Syst 2012;26:69–74.

[46] Mech LD. Alpha status, dominance, and division of labor in wolf packs. Can J
Zool 1999;77:1196–203.

[47] Muro C, Escobedo R, Spector L, Coppinger R. Wolf-pack (Canis lupus) hunting
strategies emerge from simple rules in computational simulations. Behav
Process 2011;88:192–7.
[48] Digalakis J, Margaritis K. On benchmarking functions for genetic algorithms.
Int J Comput Math 2001;77:481–506.

[49] Molga M, Smutnicki C. Test functions for optimization needs. Test functions for
optimization needs; 2005.

[50] Yang X-S. Test problems in optimization, arXiv, preprint arXiv:1008.0549;
2010.

[51] Mirjalili S, Lewis A. S-shaped versus V-shaped transfer functions for binary
Particle Swarm Optimization. Swarm Evolut Comput 2013;9:1–14.

[52] Liang J, Suganthan P, Deb K. Novel composition test functions for numerical
global optimization. In: Swarm intelligence symposium, 2005. SIS 2005.
Proceedings 2005 IEEE; 2005. p. 68–75.

[53] Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, et al. Problem
definitions and evaluation criteria for the CEC 2005 special session on real-
parameter optimization, Technical Report, Nanyang Technological University,
Singapore, 2005, http://www.ntu.edu.sg/home/EPNSugan.

[54] van den Bergh F, Engelbrecht A. A study of particle swarm optimization
particle trajectories. Inf Sci 2006;176:937–71.

[55] Arora JS. Introduction to optimum design. Academic Press; 2004.
[56] Belegundu AD, Arora JS. A Study of mathematical programming methods for

structural optimization. Part I: Theory. Int J Numer Meth Eng 1985;21:1583–99.
[57] Coello Coello CA, Mezura Montes E. Constraint-handling in genetic algorithms

through the use of dominance-based tournament selection. Adv Eng Inform
2002;16:193–203.

[58] He Q, Wang L. An effective co-evolutionary particle swarm optimization for
constrained engineering design problems. Eng Appl Artif Intell 2007;20:89–99.

[59] Mezura-Montes E, Coello CAC. An empirical study about the usefulness of
evolution strategies to solve constrained optimization problems. Int J Gen Syst
2008;37:443–73.

[60] Coello Coello CA. Use of a self-adaptive penalty approach for engineering
optimization problems. Comput Ind 2000;41:113–27.

[61] Mahdavi M, Fesanghary M, Damangir E. An improved harmony search
algorithm for solving optimization problems. Appl Math Comput
2007;188:1567–79.

[62] Huang F, Wang L, He Q. An effective co-evolutionary differential evolution for
constrained optimization. Appl Math Comput 2007;186:340–56.

[63] Yang XS. Nature-inspired metaheuristic algorithms. Luniver Press; 2011.
[64] Carlos A, COELLO C. Constraint-handling using an evolutionary multiobjective

optimization technique. Civil Eng Syst 2000;17:319–46.
[65] Deb K. Optimal design of a welded beam via genetic algorithms. AIAA J

1991;29:2013–5.
[66] Deb K. An efficient constraint handling method for genetic algorithms. Comput

Methods Appl Mech Eng 2000;186:311–38.
[67] Lee KS, Geem ZW. A new meta-heuristic algorithm for continuous engineering

optimization: harmony search theory and practice. Comput Methods Appl
Mech Eng 2005;194:3902–33.

[68] Ragsdell K, Phillips D. Optimal design of a class of welded structures using
geometric programming. ASME J Eng Indust 1976;98:1021–5.

[69] Deb K, Gene AS. A robust optimal design technique for mechanical component
design. In: Presented at the Dasgupta D, Michalewicz Z, editors. Evolutionary
algorithms in engineering applications, Berlin; 1997.

[70] Kaveh A, Talatahari S. An improved ant colony optimization for constrained
engineering design problems. Eng Comput Int J Comput-Aided Eng
2010;27:155–82.

[71] Kannan B, Kramer SN. An augmented Lagrange multiplier based method for
mixed integer discrete continuous optimization and its applications to
mechanical design. J Mech Des 1994;116:405.

[72] Sandgren E. Nonlinear integer and discrete programming in mechanical
design; 1988. p. 95–105.

[73] Caer C, Le Roux X, Marris-Morini D, Izard N, Vivien L, Gao D, et al. Dispersion
engineering of wide slot photonic crystal waveguides by Bragg-like
corrugation of the slot. Photonics Technol Lett, IEEE 2011;23:1298–300.

[74] Baba T. Slow light in photonic crystals. Nat Photonics 2008;2:465–73.
[75] Zhai Y, Tian H, Ji Y. Slow light property improvement and optical buffer

capability in ring-shape-hole photonic crystal waveguide. Light Technol J
2011;29:3083–90.

[76] Wang D, Zhang J, Yuan L, Lei J, Chen S, Han J, et al. Slow light engineering in
polyatomic photonic crystal waveguides based on square lattice. Optics
Commun 2011;284:5829–32.

[77] Mirjalili SM, Mirjalili S. Light property and optical buffer performance
enhancement using Particle Swarm Optimization in Oblique Ring-Shape-
Hole Photonic Crystal Waveguide. In: Photonics global conference (PGC);
2012. p. 1–4 [2012].

[78] Mirjalili SM, Abedi K, Mirjalili S. Optical buffer performance enhancement
using Particle Swarm Optimization in Ring-Shape-Hole Photonic Crystal
Waveguide. Optik – Int J Light Elect Optics 2013;124:5989–93.

[79] Mirjalili SM, Mirjalili S, Lewis A. A novel multi-objective optimization
framework for designing photonic crystal waveguides. Photonics Technol
Lett IEEE 2014;26:146–9.

[80] Mirjalili SM, Mirjalili S, Lewis A, Abedi K. A tri-objective particle swarm
optimizer for designing line defect photonic crystal waveguides. Photonics and
Nanostructures – Fundamentals and Applications.

[81] Wu J, Li Y, Peng C, Wang Z. Wideband and low dispersion slow light in slotted
photonic crystal waveguide. Optics Commun 2010;283:2815–9.

[82] Mirjalili S, Mirjalili SM, Yang X. Binary bat algorithm. Neural Comput Appl, in
press, DOI: 10.1007/s00521-013-1525-5.

http://refhub.elsevier.com/S0965-9978(13)00185-3/h0060
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0060
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0060
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0065
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0075
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0075
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0080
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0080
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0085
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0085
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0090
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0090
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0090
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0095
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0105
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0105
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0115
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0115
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0120
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0120
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0125
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0125
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0130
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0130
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0135
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0135
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0140
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0140
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0145
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0145
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0155
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0155
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0155
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0210
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0210
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0215
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0215
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0215
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0220
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0220
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0225
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0225
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0230
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0230
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0235
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0235
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0235
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0240
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0240
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0255
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0255
http://www.ntu.edu.sg/home/EPNSugan
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0270
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0270
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0275
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0415
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0415
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0285
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0285
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0285
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0290
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0290
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0295
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0295
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0295
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0300
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0300
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0305
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0305
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0305
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0310
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0310
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0315
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0320
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0320
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0325
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0325
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0330
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0330
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0335
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0335
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0335
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0340
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0340
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0350
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0350
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0350
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0355
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0355
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0355
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0365
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0365
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0365
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0370
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0375
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0375
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0375
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0380
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0380
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0380
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0390
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0390
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0390
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0395
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0395
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0395
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0405
http://refhub.elsevier.com/S0965-9978(13)00185-3/h0405

	Grey Wolf Optimizer
	1 Introduction
	2 Literature review
	3 Grey Wolf Optimizer (GWO)
	3.1 Inspiration
	3.2 Mathematical model and algorithm
	3.2.1 Social hierarchy
	3.2.2 Encircling prey
	3.2.3 Hunting
	3.2.4 Attacking prey (exploitation)
	3.2.5 Search for prey (exploration)

	4 Results and discussion
	4.1 Exploitation analysis
	4.2 Exploration analysis
	4.3 Local minima avoidance
	4.4 Convergence behavior analysis

	5 GWO for classical engineering problems
	5.1 Tension/compression spring design
	5.2 Welded beam design
	5.3 Pressure vessel design

	6 Real application of GWO in optical engineering (optical buffer design)
	7 Conclusion
	Appendix A Supplementary material
	References

